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Abstract—Most state-of-the-art methods do not explicitly use
scene semantics for place recognition by the images. We address
this problem and propose a new two-stage approach referred
to as TSVLoc. It solves the place recognition task as the image
retrieval problem and enriches any well-known method. In the
first model-agnostic stage, any modern neural network model that
does not directly use semantics, e.g., HF-Net, NetVLAD, or Patch-
NetVLAD, can be used. In the second stage, we apply the Vector
Symbolic Architectures (VSA) framework to construct semantic
scene representation. Our method uses semantic segmentation
of an image to extract objects and their relations and applies
VSA operations to form semantic scene representation. For this,
an optional usage of the depth map was considered, which
showed promising results. The effectiveness of our approach is
demonstrated through extensive experiments on the open large-
scale datasets: the indoor HPointLoc dataset built in the Habi-
tat simulation environment and the outdoor Oxford RobotCar
dataset. The proposed solution significantly improves the quality
of the place recognition.

Index Terms—place recognition, image retrieval, vector sym-
bolic architectures, semantic scene representation

I. INTRODUCTION

The solution to the place recognition problem is an essential
part of approaches to the global localization of intelligent
agents, particularly, robots. The use of onboard camera images
for this purpose makes such solutions simpler and cheaper.
Furthermore, the advent of affordable RGB-D cameras and fast
and high-quality algorithms for semantic segmentation makes
it possible to use information about the objects’ presence and
spatial relationships with various semantic categories.

Such information is typically encoded implicitly in modern
image retrieval methods that form a global image embedding
at the output. An important modern research focus area is the
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Fig. 1. To form a semantic scene encoding Eserm, we use depth and semantic
maps of a query frame. For every class C, we generate a high-dimensional
vector ¢, then bind it with a depth vector d¢ of the center of mass of the
class instance, and get an object vector o. After that, every pair of vectors
that have a common border is bound together through an auxiliary vector r
(relation “near”) and summed up. In the example above, c¢ and cg are high-
dimensional vectors for classes table and floor; dc, , dc, and ot, of are depth
and object vectors correspondingly

improvement of such basic methods based on a multi-stage
approach to refine the results of matching the query image and
the most similar images from the database [1]. However, the
straightforward application of semantic information to form
informative and interpretable image embeddings is still poorly
understood.

This paper proposes a novel two-stage approach termed
TSVLoc, which uses the Vector Symbolic Architectures (VSA)
framework [2] to construct semantic scene representation
based on input semantic and depth maps. It is designed to
enhance the quality of any basic RGB image-based approaches
to place recognition.

Vector Symbolic Architectures (VSA) were first proposed



in cognitive psychology and cognitive neuroscience [3] as
computational models of the cognitive process. Under this
framework, symbols are represented as vectors with a high yet
fixed dimension. The symbolic operations, such as assigning a
value to an attribute, are performed by vector operations. Thus,
it bridges the gap between symbolic and subsymbolic (con-
nectionist) representation. The vectors could be of different
nature: binary [4], real [5], or complex [6]. Vector Symbolic
Architectures enable us to encode complex structures such as
sequences [7], [8], graphs [4], [9], binary trees [10], and even
finite-state automata [11] into high-dimensional vectors. In our
work, we use this property to encode query frame semantic
information, i.e., objects and their relative depth to the camera.

Our contributions are summarized as follows.

« We propose a novel two-stage approach for place recog-
nition referred to as TSVLoc. The first stage of the
proposed method is model agnostic, so it has a potential
to be used to boost the performance of any traditional
method that outputs global embeddings.

« We use the semantic embedding of a scene as an ad-
ditional frame embedding to refine place recognition
results. We construct this embedding from semantic and
depth maps of the scene using Vector Symbolic Archi-
tectures.

« Extensive experiments have shown that TSVLoc demon-
strates a significant improvement for basic methods based
on the popular neural network models HF-Net and
NetVLAD.

II. RELATED WORK
A. Place Recognition

Image retrieval is a key task for the place recognition
problem. It involves finding and ranking the most similar
images from the database to a query image. Its solution
requires generating informative and compact local and global
descriptors of the images.

The common “classical” approaches obtain global features
(embeddings) by aggregating the local descriptors using the
bag of words (BoW) scheme, e.g., DBoW2, DBoW3 [12],
or FBoW [13], or vectors of locally aggregated descriptors
(VLAD) [14].

Over the last few years, new approaches based on deep
neural networks have been released: NetVLAD model [15],
its distilled version HF-Net [16], Ap-Gem approach with dif-
ferentiable rank loss function [17], etc. These have surpassed
the classical ones by feature learning for the specific problems.

The similar image candidates can be also re-ranked by
analyzing statistics of geometrically correct matching of local
descriptors for image patches as in Patch-NetVLAD [1].

Such approaches can be classified as two-stage, providing
a state-of-the-art level of quality when solving the place
recognition problem.

To improve the matching of embeddings, some approaches
utilize semantic information for global feature vector gener-
ation. The key idea of the Vector semantic representations
(VSR) approach [18] is to describe the relations between

the semantic objects. For example, there is a sidewalk to
the right of the street and grass terrain to the left, which,
in turn, is followed by another sidewalk and a fence. The
semantic ranking method [19] ranks the 2D-3D matches found
by the feature-based localization pipeline depending on how
well they agree with the scene semantics. Its authors proposed
an original approach to learning 3D semantic descriptors.
However, in spite of notable achievements of these approaches,
there still is a problem with the extraction of invariant and
informative semantic descriptors of images in dynamically
changing scenes.

B. Semantic Scene Representation

The idea of using semantic information of a scene for image
retrieval is being actively developed. In [20], the detailed
semantic of the scene is represented by a scene graph. It
encodes objects, their attributes, and relationships between
objects. The scene graph describes an image in general. To
represent a specific image, a scene graph is grounded to it
by associating each object with a corresponding region of the
image (bounding box).

The problem of generating scene graphs from images is
well-studied [21]-[24]. Most of the models rely on message
passing [25] between objects or corresponding relations [22],
[26]-[29]. Such representation is also applicable for 3D scenes
[30], [31]. Some models use an external knowledge base to
refine features of extracted objects by commonsense relation-
ships [32].

All of these approaches require learning on a specific
dataset (e.g., Visual Genome [33], Open Images [34]) that
takes time and resources. In our method, we utilize an image
segmentation map available for an agent navigation system and
construct a semantic scene representation without any learning.
Using this representation for place recognition in a second
stage on top of traditional methods leads to performance
improvements.

III. METHODOLOGY
A. Task Statement

In this paper, we solve the problem of place recognition
and estimate the position P, with three degrees of freedom
(z,vy, 2) of an intelligent agent from the image I, of its RGB-
D camera (query) in the vicinity of the poses of the cameras
Pj, from the database, i € [1, N]. The N camera poses from
the database form a regular grid of groups of six cameras, the
images I}, of which cover 360° view in the environment.

As the desired pose for the query image, we use the pose
of the most similar image from the database with the index
Ltop -

_ pltopy
Py=P,"".

To select the most similar image, we explore both popular
image retrieval approaches based on neural networks and the
capabilities of Vector Symbolic Architectures for efficiently
encoding R, semantic maps and D, depth maps as high-
dimensional vectors.



This formulation of the visual place recognition problem
allows us to investigate the possibilities and quality of an
intelligent agent re-localization on previously seen scenes
using important additional semantic information.

B. Place Recognition

In the first stage, we can vary several neural network-based
methods of place recognition for generating global feature
vectors (embeddings) for the query image F; and images from
the database E‘,. We use the popular NetVLAD approach,
which generates a vector of size 32,768 elements, as well as its
distilled version from the HF-Net approach, which generates a
vector of length 4,096. Based on these embeddings, the top-n
similar image (with index ij,, ) in the sense of the similarity
metric S is determined:

itop, = tOPk (S (Eq7 E&b) ,n) ,
where topk is the operator for selection k¥ = n image indices
from database in descending order of the similarity metric S.
In this paper, S is the cosine proximity function, the value of
which in the range [0, 1] indicates the similarity of images.

C. Semantic Representation

Vector Symbolic Architectures (VSAs) [2], or Hyperdimen-
sional Computing, is a computing framework that operates
on high-dimensional vectors. VSAs originate in cognitive
psychology and cognitive neuroscience as a connectionist
model capable of performing symbolic reasoning. Under this
framework, random high-dimensional vectors, or HD vectors,
represent symbols, and, consequently, manipulation with them
reduces to vector operations. The randomness of HD vectors
means that to encode a basic symbol, we sample a vector
from a vector space of dimension D (typically D is greater
than 1,000) and use it as a seed hypervector. VSAs distribute
the encoded information across all components of the HD
vector. Thus, only the whole vector could be interpreted. Dis-
tributed representation is different from localist representation,
where every single vector component has a meaning. The
concentration of the measure phenomenon [35], [36] ensures
that random vectors from a high-dimensional vector space are
almost orthogonal (quasi-orthogonal), and thus representations
of different basic symbols are dissimilar. The nature of the
vector space might be different that results in binary, real, or
complex HD vectors. These seed hypervectors are stored in the
item memory, from which they could be extracted and used
to form complex structures as composite vectors. To encode
complex structures into HD vectors, VSAs offer several vector
operations. The exact implementation of vector operations
varies for different vector spaces while keeping computational
properties. We explain these operations using an example of
the Multiply-Add-Permute [5] variation of VSAs that works
with real vectors.

The similarity measure is the basis for reasoning in VSAs,
as it is used to extract seed hypervectors from the item memory
and compare complex HD vectors.

The addition operation or bundling (denoted as +) is an
element-wise sum. The resultant vector is similar to summand
vectors but quasi-orthogonal to others. Bundling represents a
set of vectors and, correspondingly, a set of symbols.

The multiplication operation or binding (denoted as ©) is
an element-wise multiplication of two HD vectors. It maps
these vectors to another HD vector. The resultant hypervector
is dissimilar (quasi-orthogonal) to multiplied and other HD
vectors from the vector space. Semantically, binding represents
an attribute-value pair, an assignment of a value to a corre-
sponding attribute. Binding and bundling are core operations
for encoding complex structures into HD vectors.

In this paper, we use a semantic scene representation
inspired by [37]-[39]. We consider the scene as a collection
of objects, their properties, and relations between them. The
semantic map is used to detect objects presented on the
scene. For each object, an HD vector is generated. If objects
belong to the same class, we use the same vectors to encode
them. The only relation between objects we use is a “near”
relation. It indicates that one object is close to another, and,
on the semantic map, this is expressed in the fact that two
corresponding segments have a common border.

The previous works [37]-[39] used simple schemes to
encode location and did not handle real-valued coordinates.
Therefore, as VSA, we use a variance of the Semantic Pointer
Architecture (SPA) [6], Spatial Semantic Pointers [40], as
it offers various schemes for encoding structured continuous
space. Real random vectors with a unit norm are used as
seed hypervectors. The binding operation in SPA is a circular
convolution (denoted as ®):

u®w :=IDFT(DFT(u) ® DFT(w)),

where u,w are two HD vectors; DFT and IDFT denote
the Discrete Fourier Transform and Inverse Discrete Fourier
Transform accordingly.

SPA also defines the fractional binding operation:

w” := RUIDFT((DFT(u)")2"),

where R denotes the real part of a number.

These operations enable us to encode numerical values cor-
responding to the coordinates x,y by generating two unitary
HD vectors for the coordinate axes X,Y (vector u is called
unitary if Vv : ||v|| = ||v ® u|]) and applying fractional
binding:

V=X"®Y"

In our work, this is used to encode the depth of objects relative
to the camera in range [0, 2].

We encode semantic information into an HD vector E.,,
as follows. The class extraction function C'E outputs a list of
class instances L for a semantic map R,: CE(R,) = L..
For every class C' from Lc, we generate an HD vector ¢
(sample from RP). The depth extraction function DE takes
a depth map D, and L¢. For every class instance from L¢,
DFE outputs a relative depth from the camera to the instance
encoded with a fractional binding as a vector d’, where ¢
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Fig. 2. Overview of the proposed model. The model involves two stages. In the first stage, a global embedding is extracted using one of the traditional
methods. Then, an image database is queried, and a ranking of images is produced. In the second stage, the semantic HD vector of a query image is constructed
from semantic segmentation. We use Vector Symbolic Architecture to form a semantic vector. Next, we query an image database and get the image ranking
for semantic vectors. After that, the current ranking scores, together with the first-stage scores, are passed on to the score fusion module to produce a top-1

ranking image.

is an instance number. All vectors are stored in the list Lg4:
DE(D,,L.) = Lq. We bind an instance class vector ¢ with
an instance depth vector d’ to get an HD vector o for the
object: ¢ ® dﬁ. To construct a final vector E.,,, we find all
object pairs on a semantic map that have a common border,
encode these pairs as 0, ®r ® o, where an auxiliary seed HD
vector r represents relation “near”, and sum them up. Thus,
the semantic vector is:

Eserm = Z (Oi ®r®0j),
i,
where objects ¢, j have a common border (Fig. 1).

The most relevant to our approach is the work in [18]. The
authors use a representation called Vector Semantic Repre-
sentation (VSR), which is obtained by a combination of HD
vectors and feature map responses of salient regions from
DELF [41]. Meanwhile, in our model, there is no mixing of
embeddings of different approaches. Also, for combining VSR
and global embeddings, an element-wise multiplication of their
pairwise image similarity matrices is computed. We use the
two-stage re-ranking approach described in the next section.

D. Proposed Method Structure

In this paper, we propose a two-staged model (Fig. 2) for a
place recognition task with a semantic scene representation by
Vector Symbolic Architecture. We called this model TSVLoc
for Two-Staged VSA Localization.

The first stage of the proposed architecture is model-
agnostic. Thus, any traditional method (HF-Net [16],
NetVLAD [15], etc.) could be used. Given an RGB-D image,
a global embedding F, is produced. Then, the image database
is queried to get top-n similar images %j,, and their scores.

In the second stage, the semantic segmentation map and
depth information is used to construct a semantic scene

representation Fg.,,. Then, semantic similarity scores Ssep,
for every iz,, are calculated. After that, we scan through
ifop, . the first candidate image from i;,, is considered as
a result. We move to the next image. If the similarity S
decreases by less than v, relative to the current result and
the semantic similarity Ss.,, increases by more than ~yo, this
image is considered as a result, where ; and 7, are tunable
hyperparameters.

E. Quality Evaluation

To evaluate the localization quality of the proposed method,
we use the Recall (R) metric with different thresholds. It
is calculated as the fraction of query images whose trans-
lation errors do not exceed the specified thresholds €; €
{0.5m, 1m, 5m, 10m}. Such thresholds were chosen to assess
the accuracy of solving the global indoor localization problem
at various spatial scales. We do not take into account the
rotation error because we do not optimize the camera pose
after image retrieval.

IV. EXPERIMENTS

A. Datasets

The paper considers the problem of place recognition both
in an indoor and outdoor environments. The results are planned
to be used in the navigation of intelligent agents.

A flexible tool for carrying out indoor experiments is the
photorealistic Habitat simulator [42]. However, it contains only
3D models of various rooms and an interface for extracting
data (images, semantic maps, depth maps, poses). To inves-
tigate the quality of semantic image retrieval as one of the
key stages of place recognition, we chose the open dataset



HPointLoc!, created on the basis of this simulator with the
Matterport3D environment [43].

The HPointLoc dataset contains 86,678 RGB-D images with
a resolution of 256x256. Ground truth segmentation maps
include 41 semantic categories for 488,717 labeled objects.
Its peculiarity is the representation of key camera poses in the
form of a regular grid that covers the 3D scene.

To demonstrate more clearly the specific impact of our
semantic approach on the place recognition results, we defined
a HPointLoc subset with query images difficult for basic
image retrieval method. We selected queries for which the
localization error, when using the HF-Net method, is greater
than 0.5m. This subset contains 9,324 query images (see Fig.
3). We termed this subset HPointLoc-Hard.

Query images

Fig. 3. Examples of query images and HF-Net image retrieval results from
a prepared subsample of the HPointLoc dataset termed HPointLoc-Hard. We
can see that the Top-1 image selection is wrong for these cases

In addition to the HPointLoc dataset, we validated our ap-
proach on subsamples of the outdoor Oxford RobotCar dataset
[44]. We took the same subsamples as in [18]: 72014-11-
25-09-18-32” (2,244 images), "2014-12-09-13-21-02” (2,210
images), 72014-12-16-18-44-24” (1,916 images), *2015-02-
03-08-45-10” (2,408 images), ”2015-05-19-14-06-38" (2,065
images), and "2015-08-28-09-50-22” (2,072 images). We took
only the central stereo camera data from each subsample. The
resolution of the images is 1,280x960. Also, we did not use all
the images from the camera. We found the first frame closest
to zero ground truth timestamp. Next, we sampled frames with
a frequency of 1 Hz and selected the poses closest to them in
terms of timestamp.

Semantic segmentation for the Oxford RobotCar dataset
was performed using the HRNet + OCR? model trained on
Mapillary Vistas dataset [45].

B. Place Recognition Performance

To estimate the place recognition quality, we use the Recall
localization metric on all query images with different distance
thresholds.

Results on the indoor HPointLoc and outdoor the Oxford
RobotCar datasets for different image retrieval methods are

Ihttps://github.com/cds-mipt/HPointLoc
Zhttps://github.com/HRNet/HRNet-Semantic-Segmentation

shown in Table I and Table II correspondingly. We do not use
SEBD mode for the Oxford RobotCar dataset since the depth
map is not available.

During the experiments, we used real vectors with a unit
norm and dimension 1,000 for semantic representation. In a
two-stage place recognition process, the same hyperparameters
were used for all maps from the dataset: v; = 0.06, v = 0.4,
N =5. The best results were obtained with complex semantic
encoding of the scene, which, among other things, takes into
account the depth map, encoding the distance to the center of
mass of a particular object.

As a basis for our approach, we used three methods:
HF-Net®, NetVLAD?, and the state-of-the-art method Patch-
NetVLADS. TSVLoc(H), TSVLoc(V), and TSVLoc(P) stand
for different models used in the first stage, HF-Net, NetVLAD,
and Patch-NetVLAD correspondingly. As you can see from
Table I, our approach wins at large distances and trails to it
at short distances. In experiments on Oxford RobotCar (Table
II), our approach with Patch-NetVLAD outperforms all other
approaches.

TABLE I
LOCALIZATION METRICS ON ALL QUERY IMAGES FROM THE HPOINTLOC
DATASET. R(0.5) MEANS THE RECALL METRIC WITH
0.5M DISTANCE THRESHOLD.

[ Method [[ R(0.5) [ R(D [ RG) | R(10) |
HF-Net 0.890 0.892 0.963 0.976
TSVLoc(H+SEB) 0.892 0.893 0.977 0.988
TSVLoc(H+SEBD) 0.895 0.896 0.980 0.993
NetVLAD 0.887 0.888 0.962 0.973
TSVLoc(V+SEBD) 0.892 0.893 0.976 0.987
Patch-NetVLAD 0.942 0.943 0.968 0.978
TSVLoc(P+SEBD) 0.931 0.946 0.978 0.982

TABLE II
AVERAGED LOCALIZATION METRICS ON
THE OXFORD ROBOTCAR DATASET.

[ Method [ RG [ RUIO) [ R25 [ RGO) [ RI00) |
HF-Net 0.485 0.639 0.708 0.737 0.761
TSVLoc(H+SEB) 0.494 0.647 0.715 0.741 0.765
NetVLAD 0.568 0.725 0.779 0.802 0.822
TSVLoc(V+SEB) 0.573 0.731 0.783 0.805 0.824
Patch-NetVLAD 0.702 0.842 0.877 0.888 0.898
TSVLoc(P+SEB) 0.714 0.853 0.886 0.896 0.905

We calculated the localization quality metrics for the
HPointLoc-Hard dataset subsample (see Table III). Our two-
stage approach does not always improve the response of the
original model; sometimes it turns out that due to the two-
stage approach, a less suitable image is selected. However,
Table I shows that our method often improves the response
rather than making it worse, and Table III demonstrates that
this approach is most effective in cases where the error of the
original model is large (five meters or greater).

3https://github.com/cvg/Hierarchical-Localization
“https://github.com/Nanne/pytorch-NetVlad
Shttps://github.com/QVPR/Patch-NetVLAD
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Fig. 4. Examples of successful image retrieval results for proposed TSVLoc method

TABLE III
LOCALIZATION METRICS ON THE SAMPLES
OF HPOINTLOC-HARD SUBSET.

[ Method [RO5 [ ROD [RG) [R(10) |
HF-Net 0.000 0.011 0.632 0.780
TSVLoc(H+SEB) 0.085 0.097 0.799 0.897
TSVLoc(H+SEBD) || 0.087 0.098 0.802 0.913

Fig. 4 shows some examples of successful image retrieval
results of our method. Fig. 4 (a) demonstrates the case when
both the TSVLoc and the base method give the optimal answer.
Other examples demonstrate cases where TSVLoc chooses a
better answer than the top-1 result of HF-Net. In the case from
Fig. 4 (b,c,d), it can be seen that the HF-Net chose the top-
1 image as the most suitable, probably because of the door
in a similar perspective, although it is clear that these rooms
are different because of the absence of a wall and objects at
the corner of the room in the query image. These examples
attest to the benefits of using semantic scene encoding. Fig. 5

shows an example for which both the base method and ours
offer a far-from-the-optimal-answer; one of the possible ways
to solve such cases is using a more complex scene encoding.

C. Ablation Studies

Applying the semantic representation of scenes for the place
recognition task, we started with the simplest representation
of scenes and gradually added various improvements to it,
achieving an increase in localization metrics with TSVLoc:
the base variant is a simple enumeration of the types of
objects represented in the image and encoding them into one
vector (SE); the first improvement to this method is to encode
every pair of objects with common boundaries into one entity
through an auxiliary vector (SEB); the next improvement
involves the center of mass being calculated for each instance
of segmentation, and the depth value at the point of the center
of mass being encoded into a vector of this object (SEBD).
Table IV shows the localization metrics in the case of using
only semantic vectors. Here the answer is an image with the
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Fig. 5. Example of erroneous result for TSVLoc method

closest semantic vector to the query vector in terms of dot
product.

TABLE IV
LOCALIZATION METRICS ON ALL QUERY IMAGES FROM THE HPOINTLOC
DATASET USING ONLY SEMANTIC VECTORS

[ Encoding type [ RO3 RO [ R(G) [ R(0) |
SE 0.294 0.295 0.644 0.771
SEB 0.357 0.359 0.669 0.821
SEBD 0.372 0.375 0.679 0.834

The choice of a localization result with a semantic approach
occurs in two stages: in the first stage, images from the
database are ranked by their similarity to the query image
(using the HF-Net or NetVlad method); in the second stage,
topN instances are taken from the ranked images. The first
image is considered as a result. During the transition to the
next image, if the similarity of the base descriptors decreased
by less than 7; relative to the current result and the semantic
similarity increased by more than ~5, this image is considered
as a result. N, ~;, and ~» are tunable hyperparameters. We
attained the best results using this two-step method; besides,
we tried to recalculate the similarities of the images s as
follows:

S = (1 - a)Sbase + aSsema

where Spse 1S the similarity taken from the base method, Ss¢;,
is the similarity of semantic vectors. After this recalculation,
the images were re-ranked and the top-1 image was selected.
The best results were achieved with o = 0.1. This method
showed worse results than the two-stage method but provided
a minor increase to the metrics. Table V lists the results of
using this approach.

Additionally, we conducted experiments with different di-
mensions of the semantic vector F.,,. Fig. 6 shows the
value of the metrics on the HPointLock dataset for the model
TSVLoc(H+SEBD). The values reach a plateau at a dimension
of 1,000.

TABLE V
LOCALIZATION METRICS ON ALL QUERY IMAGES FROM THE HPOINTLOC
DATASET WITH RECALCULATED SIMILARITIES (o« = 0.1)

[ Method [RO5 RO __[RG [ RAO) |
HF-Net 0.890 0.892 0.963 0.976
HF-Net + SEB 0.890 0892 0.965 0.980
HF-Net + SEBD 0.891 0.893 0.968 0.981
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Fig. 6. Recall metric with different thresholds on the HPointLock dataset for
the model TSVLoc(H+SEBD) with varied dimensions of the semantic vector
Esem

V. CONCLUSION

The key result of this work is that we proposed a novel
Two-Stage Vector Symbolic approach (TSVLoc) to construct
semantic scene representation based on input semantic and
depth maps. Experiments have shown that the TSVLoc method
of semantic image retrieval significantly improves previous
methods based on the popular neural network models HF-Net,
NetVLAD, and Patch-NetVLAD.

Thus, the generation of additional embeddings using Vector
Symbolic Architectures based on segmentation and depth
maps (SEBD mode of our TSVLoc approach) offers a more
accurate solution to the problem of rough global localization.
This proves to be promising for the loop detection and
first approximation of the camera pose in the methods of
simultaneous localization and mapping. The ability to decode
the generated semantic embedding by VSA operations into
HD vectors from which it was constructed can enhance the
interpretability of the selection of the most similar image from
the database. It will be the subject of further research.
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